ST 674
Monte Carlo and Sim Methods
Monte Carlo techniques and simulation methods are studied in detail. Applications include mathematical modelling and computation of numerical solutions; evaluation of multi-dimensional integrals through pseudo-random numbers, quasi-random numbers, Sobol sequences and other sequences of lattice points. Topics include: sampling algorithms; simulated annealing; Markov processes; variance reduction techniques; importance sampling; adaptive and recursive Monte Carlo methods. Applications include numerical integration of multivariate functions in high dimensions; approximation algorithms for solving partial differential equations; stochastic lattice approaches and path expansions. Additional topics may include parallel algorithms for Monte Carlo simulations.
Prerequisites: ST559 or equivalent.
Exclusions: MA547, MA674, ST474, or equivalent.
Monte Carlo techniques and simulation methods are studied in detail. Applications include mathematical modelling and computation of numerical solutions; evaluation of multi-dimensional integrals through pseudo-random numbers, quasi-random numbers, Sobol sequences and other sequences of lattice points. Topics include: sampling algorithms; simulated annealing; Markov processes; variance reduction techniques; importance sampling; adaptive and recursive Monte Carlo methods. Applications include numerical integration of multivariate functions in high dimensions; approximation algorithms for solving partial differential equations; stochastic lattice approaches and path expansions. Additional topics may include parallel algorithms for Monte Carlo simulations.
Prerequisites: ST559 or equivalent.
Exclusions: MA547, MA674, ST474, or equivalent.
Monte Carlo techniques and simulation methods are studied in detail. Applications include mathematical modelling and computation of numerical solutions; evaluation of multi-dimensional integrals through pseudo-random numbers, quasi-random numbers, Sobol sequences and other sequences of lattice points. Topics include: sampling algorithms; simulated annealing; Markov processes; variance reduction techniques; importance sampling; adaptive and recursive Monte Carlo methods. Applications include numerical integration of multivariate functions in high dimensions; approximation algorithms for solving partial differential equations; stochastic lattice approaches and path expansions. Additional topics may include parallel algorithms for Monte Carlo simulations.
Prerequisites: ST559 or equivalent.
Exclusions: MA547, MA674, ST474, or equivalent.